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ABSTRACT 

A weak logic of programs is a formal system in which statements that mean "the program halts* 
cannot be expressed. In order to prove termination, we would usually have to use a stronger 
logical system In this paper we show how we can prove termination of both iterative and 
recursive programs within a weak logic by adding pieces of code and placing restrictions on 
loop invariants and entry conditions. Thus, most of the existing verifiers which are based on a 
v/tak logic of programs can be used to prove termination of programs without any modification. 
We give examples of proofs of termination and of accurate bounds on computation time 
that were obtained using the Stanford Pascal program verifier. 
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Proof of Termination within a Weak Logic of Programs 

by 

David Luckham   and   Nori Suzuki 

1. INTROPUCTION. 

, 

t-1 Stdica    [-, : 

A weak logic of programs is one in which statements that "a program halts" 

cannot be expressed. Such a logic has been given by [Hoare C9,71] and its proof 

theory has been defined and studied in [Igarashi, London & Luckham](referred to as 

ILL), [Hoare & Lauer], [Cook]. Other recent papers have been devoted to 

strengthening this logic so that questions of termination are expressable; e.g. 

Dijkstra's notion of weakest precondition [Dijkstra], and various suggestions for 

introducing well-orderings into the assertion language. 

Here we give a simple application of the method of Virtual Programming which 

pertrr's strong statements of termination (e.g. program A halts and Q is true) to be 

deduced from weak statements (if A halts then Q is true) by means of the good old 

law of excluded middle. (Remark: the notion of virtual program in intuitive terms is 

simply code added to an actual program which has no effect on the actual values of 

the result parameters.) The method requires no change whatever in the weak logic, 

and employs exactly the same automated techniques that are currently used to verify 

all manner of properties of programs [ILL, Suzuki 75a,b, von Kenke & Luckham]. This 

permits   strong   proofs   of   correctness   (i.e.   termination   and   consistency   with 
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specifications) to be obtained using the present verification systems based on the 

weak logic. Similar ideas have been put forward by Knuth [Knuth], in which he 

showed how one can prove the termination of extended Euclid's algorithm as the 

byproduct of the correctness proof using Floyd's method. 

Virtual program has been used previously to document programs in certain 

tricky situations (e.g. where the documentation uses data structures not used by the 

actual program, such as history sequences [Clint], or data structures destroyed by 

the actual program [v.Henke & Luckham]). More recently it has been used to prove 

complexity bounds on program computations [Farmwald]. The technique seems to 

present a natural approach to proving dynamic properties of programs (i.e. properties 

of the computations themselves as distinct from the final results). Termination is one 

of these dynamic properties. 

Essentially, most programs halt for simple reasons, and the programmer usually 

knows these reasons. What is needed is a natural way of permitting him to state his 

reasons. Our proposal here is simply to introduce virtual program counters into the 

program. The function of these counters is to "count" the number of computation 

steps   that   are  executed.  Each path  in   the  program  must  have  added   to   it   an 

assignment statement which increments the counter proportionally to the lennh of 

the path. The programmer must also add inductive assertions stating in effect that 

the values of the counters are bounded. Presumably he has an idea of a reasonable 

upper bound, and that is all that is necessary. The problem of proving termination 

within   ehe  usual  weak  logic  then  becomes  merely  another  verification  problem 

—namely the proof of the boundedness of the counters in the augmeuted program. 
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There is one "catch". The counters must account for every possible loop and 

recursion (i.e. every potential source of infinitely long computation), otherwise a 

correct  weak statem.n.  will not imply termination. A test for this provision can 

easily be automated. 

In section 2 we illustrate the method and the "catch" by simple examples. An 

outline of a rigorous justification is given in Section 3, and actual results using our 

present verifier [ILL, Suzuki75a,b] are included in Section 4. 

To simplify matters, we have restricted the discussion to Pascal programs 

containing Assignment, Conditional, and While statements, function calls, and 

recursive procedure calls. The extension of the method to Colo's and other 

statements is obvious. Also, we have assumed that the reader has an acquaintance 

with some of the literature on verifiers based on the weak logic of programs (see the 

references). 
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2. THE METHOD. 

Our method involves the use of very simple virtual programs. Virtual program 

is defined rather loosely as a set of instructions imbedded into the program to be 

verified so that it does not interfere with the original program (often called the 

actual program). We shall use only virtual assignment statements, and their left 

hand-sides will be required to be ghost variables--variables which are not used in the 

original program. No other kind of modifications will be allowed. It is clear that the 

addition of such instructions cannot change the behaviour of the actual program on 

the actual program variables. 

As  an example let  us look at the following program for multiplication  by 

addition. 

Program 1. 

ENTRY: a.MNTEGER; 
x«-a; 
yf-0; 
while x^O do 

begin 
x«-x-l; 
y*-y+b 
end. 

EXIT: y»a*b; 

If we want to measure the time taken to compute multiplication with the assumption 

that the assignment statement and testing both take a unit compulation time, we can 

modify the program by introduction of virtual program as follows, 

4 - 
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Program 2. 

ENTRY: a,b:lNTECER; 

y*.0; 
counler«-2; 
while xi'O do 

begin 
x«-x-l; 
y«-y+b; 
counter«-counter+3 
end. 

EXIT: y»a*b A counter"3*a*b+2; 

Suppose we can prove within the weak logic of programs that program 2 augmented 

by the new assignment instructions satisfies the new EXIT condition. The value of 

the counter in the EXIT is a function of the input parameters only. So, we will have 

proved  that  whenever  the augmented program stops the counter is bounded by  a 

bound that is given before the computation starts. Now assume that we have put the 

virtual assignments "in all the right places" so that every possible computation path 

contains an assignment which increments the counter by the number of instructions 

on the path. Then we will have proved that either the actual program 1 will stop 

within a number of steps less than the bound, or it will compute forever. This would 

give us a tool for proving bounds on the complexity of computations of programs 

using standard verificaJion techniques. 

There is one problem: the user Is responsible for putting virtual assignments of 

the form f;ounter«-f(counter) that increment the counter correctly in a sufficient 

number of places. Having done this, verifying the computation bounds becomes a 

problem of verifying a statement about the augmented program in the weak logic, and 
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the verifier can be used to aid in solving it. Note thai we do not have to extend the 

weak logic in any way. 

We might ask whether we cannot prove termination at  the same time. This 

simple thought presents another problem. See the following example, 

Program 3. 

ENTRY TRUE; 
x«-0; 
counter«-!; 
while xiO do 

begin 
x*-x+l; 
counter*-counter+2 
end. 

EXIT counter«!; 

This  program  certainly does  not terminate. But it is easily proved  to be weakly 

consistent   with   the  output  assertion, COUNTERS.   And   the  counter   is  clearly 

coununi; all possible computation steps. The weak correctness proof goes as follows. 

We take the inductive assertion Xi0 as invariant of the loop. Then, three verification 

conditions are generated corresponding to three paths in the program. 

(1). TRUE-*0i0. 

(2). X^OAX^O ■♦ X+1>0. 

(3). Xi0A-Xi0 -» COUNTERS. 

They   are   all   valid.  Condition  (1)  requires   that   when   the  control   reaches   the 

while-statement, the invariant will be satisfied intially. And (2) guarantees that X>0 is 

the   invariant   of   the   loop.  Condition  (2)  is   valid  since   the   antecedent,  namely 

Xi0AnXi0, is a contradiction; that is, the path to the EXIT is never executed. 

ifeM^,^^.Mi,iiMl^^A.^.^^tli^^ 
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1 he question of proving termination is really asking under what conditions a 

weak statement about a program with a virtual counter ("if P stops then counterCb") 

implies a strong statement ("P must stop in cb steps"). As is evident from the above 

example such implications are not always valid. In order for a weak statement to 

imply a corresponding strong statement all iterative statements must have an 

invariant assertion stating that the counter is bounded. We shall call these "bound 

assertions". 

In our example, the inductivo assertion about the while loop does not even 

contain the counter. If we try to force tb« proof above to be a proof of termination, 

we have to give a stronger loop assertion so that if the program does not terminate 

and the control repeats the loop indefinitely, this assertion eventually becomes false. 

Then, the verification condition corresponding to the loop is no longer valid. 

The question is, "can we always find such strengthening of the loop invaliant?" 

And the answer is ,"yes." The expression which we have to add is COUNTERCg(X), 

where X is a set of input values of program parameters. This assertion gives the 

upper bound for the value of COUNTER. 

The method for While Statements: 

Each while statement is associated with a variable, COUNTER, which does not 

appear in the actual program. A COUNTER may be associated with many while 

statements. For each while statement, the user must add to the while body a counter 

ignment,  COUNTER<-f(COUNTER,X0), where  f  is  a strictly  increasing  integer ass 

valued function and X0 is a set of variables not occurring in the actual program. The 

- 7 - 

b^|^jk|*is^jijjjig|^ 



mmummii u ->i •I»IJ"I"L'|III"W«WHW«W^PIRäB^PPWWWWPW,IW«UU«.WIPII*.«».I»IUI"   i.iii «i. in i^|iiiyjiii..iiw initiLj i. 

us«r must also add an inductive assertion, COUNTERCglXO), where g is a well defined 

hinction of XO, to the While statement. 

The same kind of technique can be used to prove termination of procedures 

with recursive calls. Here, the potential source of infinite computation is the 

execution of arbitrarily many calls. The role of the counter will be to "count" the 

number of recursive calls by being incremented by COUNTER *- f(COUNTER,X0), f a 

strictly increasing integer valued function, each time a call occurs. So we have to 

place the counter assignments where they will be executed whenever procedures are 

evoked. One place which meets that requirement is the beginning of the procedure 

body. Also we need to add bound assertions that will become false if the depth of 

procedure calls exceed a certain level. The best candidate is the ENTRY condition of 

the procedure. The counter is introduced as an additional VARIABLE parameter of 

the procedure since it must be global to every call. 

We note that the bound assertion, say COUNTER <■ giXO) , must be fixed for 

all calls; therefore XO must not contain any parameters appearing in procedure calls 

otherwise the bound would change with the actual values of those parameters. We 

can vhink of XO as being initial values of parameters of the outermost procedure call. 

Below we give an example. 

Program 4 

procedure factorial(var X;N); 
ENTRY N>8; 
EXIT X-NI? 

i f N-0 then X «- 1 else 
beg i n 

factorial(X,N-1); 

.^.^U^^-,,..,.^. 
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X ♦• N*X 
end. 

This is a procedure which calculates factorial N and returns the result in X. The 

entry and the exit conditions are N i 0 and X ■ N! respectively. We change the 

program with COUNTER assignments. 

Program 5 

procedure factorial (var X.COUNTEF; N); 
ENTRY N>3 A C0UNTER<N8 A C0UNTtH+N-N3; 
EXIT X-NI) 

beg i n 
COUNTER -  COUNTER + 1; 
1 f N-6 then X ♦- 1 else 
beg 1 n 

factorial(X,COUNTER,N-l)j 
X - N*X 

end. 

Notice the new entry condition contains not only a bound assertion, COUNTER^NO, 

but also an inductive assertion stating an invariant relationship between COUNTER 

and  values of the parameter  N  in successive calls. Notice also  that NO has been 

introduced so that  the bound contains no parameter of the procedure; N0 is the 

initial value of N at the outermost procedure call. So what we are going to prove is 

N>0 A C0UNTER+N=N8 A COUNTERsNa 
(    COUNTER ♦• COUNTER + 1; 

i f N-0  then X ♦- 1  else 
beg i n 

'    factorial (X,COUNTER,N-Ds 
X *■ N*X 

end.     1 
X  - N! 

with the assumption that 

Y>8 A C0UNTER+Y-N8 A C0UNTERSN8   1 factorial _(X,COUNTER, Y)   1   X-Yl 

Using   techniques  for  proving  weak correctness of procedure  call  [HoareTl,  ILL, 

SuzukilSb], verification conditions are 
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IJIJ|B«.W1J"WI«PWWP""W*'WWH^^ 

(I) Ni0ACOUNTER+N-N0ACOUNTER<:N0 =(N=0 => 1-0!). 

(II) Nä0A(COUNTER*N-N0ACOUNTERcN0 ^(N^ = N-1>0ACOUNTER+1+N-1-N0A 

COUNTER<:N0A(X00-(N-1)! = N*X00!-N!)) 

which are all valid. So the actual program 4 is correct and also terminates. 

; it 

The Method for Recursive Procedures 

Each procedure declaration is associated with a variable, COUNTER, not 

appearing in the actual program. Then (1) COUNTER is introduced as a new 

VARIABLE parameter of the procedure, and all calls are correspondingly modified; 

{2)the user must place at the beginning of the procedure body, a counter assignment, 

COUNTER - f(COUNTER,X0), where f is strictly increasing and XO is a set of 

variables not appearing in any procedure body; (3) the user must add a bound 

assertion, COUNTER C g{X0), to the ENTRY condition of the procedure. 

- ie - 
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3. JUSTIFICATION OF THE METHOD. 

We are going to show that this method of adding virtual program counters to 

while statements and procedures with recursive calls is sufficient to prove 

termination. That is, a proof of weak correctness of the augmented program 

guarantees the termination of the actual program. We have omitted the case for goto 

statements but we can treat them likewise, 

(i) While statements. 

The augmented program for while statements 

UHILE C DO S 

is 

UHILE C DO 
{ COUNTER <■ f (COUNTER, W)   ;  S). 

where f(COUNTER,X0) is an integer valued strictly increasing function, that is 

COUNTER < f(COUNTEMO), 

and XO is a set of ne v variables not occurring in S. The form of the invariant of the 

loop ( or the inductive assertion ) must be 

I A COUNTER <■ giXO)      where I is any Boolean assertion. 

Now we are going to prove that if the augmented program of this form with 

the given inductive assertion is verified then the actual program terminates. Various 

proofs of the soundness (i.e. semantic consistency) of the weak logic of programs 

have been given (see [Hoare & Lauer], [Igarashi, London & Luckham], [Cook]). These 

proofs construct a model (essentially an abstract interpreter for the programming 

language) with the property that any statement about a program that is provable in 
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this  logic  is  true  when  the program is "run" on the interpreter. This means  for 

example, that if we can prove 

1 { while L do A } I     in the logic of programs, 

I being a Boolean assertion invariant of the loop, then when "while L do A" is run on 

the abstract machine, the computation state at the end of every execution of the 

loop will satisfy I. 

We shall show that the provability of weak statements about programs 

augmented by counters according to our method implies that the computations of 

those programs on the abstract machine halt. We present our argument with some 

degree of informality since we do not wish to burden the reader with the f'-...->al 

details of the model here. We shall simply refer to a "standard machine" which the 

reader can imagine is an interpreter for the axiomatic semantics of Pascal. 

Proof 

Suppose the augmented program for a simple while statement as shown with the 

given inductive assertion is proved. Suppose also that the program does not terminate 

when run on the standard machine. We are going to show that this assumption 

produces a contradiction. We are going to number the values of COUNTER so that 

COUNTER is the value of COUNTER when the control goes around the loop 1 times. 

Since the program does not terminate, we are going to have an infinite sequence of 

values, 

COUNTER  ,... .COUNTER .... 
0 n 

- 12 - 
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Because of the assignment statement 

COUNTER - f(COUNTER,X0)) 

which   takes   place   between   two   successive   values   of   COUNTER'S,   we   have   the 

relation 

COUNTER    -f(COUNTER,X0). 
i.i i 

However, f is strictly increasing and i'-o it is an integer function; therefore, 

COUNTER     i COUNTER + 1. 

From the above relation 

COUNTER   i COUNTER   + n 
n 0 

So for any integer k we can select m such that COUNTER   > k. This contradicts the 
rr. 

fact that the loop invariant is of the form 

1 A COUNTER <■ giXO),   which is true for every iteration and 

g{X0) must remain constant throughout the computation. 

So the program must terminate, 

(ii) Recursive procedures. 

The augmented program for procedure 

orocedure k(X);  B 

is 

procedure klXivar COUNTER); 
begin 

COUNTER - f(COUNTER, XO); 
B 

end. 

'he function f must be strictly increasing as was the case in (i). The bound assertion 
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is now added 10 the entry condition of the procedure , which must take the same 

form as in the case of while statements. 

Proof 

Assume first that B contains no while loops nor calls to procedures other than 

k. Suppose the augmented program with input assertions of the form 

1 A COUNTER c g{X0) 

can be verified. That is 

1  A COUNTER < g(X0)   I begin   COUNTER «•  f (COUNTER, XO); B end   }   O 

is provable with the assumption that 

i  A COUNTER < g(X(?)   { k(X) }  O  . 

Suppose also the yiogTim does not terminate. Then the depth of recursive calls to 

this procedure is infinitely large. In this case, we are going to number the values of 

COUNTER at the beginning of the procedure so that COUNTER   is the value of 

COUNTER at the i-th level of procedure call in the current calling sequence. So we 

have a sequence of values 

COUNTER  ,... .COUNTER ,... 
0 n 

Because of the assignment statement 

COUNTER *■ f(COUNTER,M) 

at the beginning of the procedure body so that it is always execute after a call, we 

have the following relation 

COUNTER    -flCOUNTER.XO), 
i«l i 

for all i. As in the previous case, for any integer k, we can choose m such that 

- 14 - 
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COUNTER   > k. 
m 

This is a contradiction because at each procedure call 

i A COUNTER <• gUO) 

must hold just at the entry to the body. Note that gW must remain constant over 

all calls because XO does not contain any program variables. 

The above arguments for a single loop and a single recursive procedure can be 

generalized for nested loops and mutual recursive procedures. Essentially, if there is 

an infinite computation of an augmented program with n counters, one of those 

counters will be incremented infinitely many times. 
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4. EXAMPLES. 

All proofs below were obfuned using the Stanford Pascal Verifier. This system is 

implemented in LISP and runs on a PDP-10 in about 50K words of memory. TKe main 

references for details of this verifier are [igarashi, London & Luckham, Suzuki a.b]. 

The first example is Dijkstra's square root program which computes square root of N. 

The problem here is to verify both that the program halts and computes an integer 

approximation to the square root of N. The program has been augmented by 

operations on the virtual variable COUNTER. Termination of the square root 

program is verified by proving the bound assertion on COUNTER for the augmented 

program. The documentation is expressed in terms of user-defined concepts such as 

"B2 is a power of four" and "the integer logarithm base 4 of B2". Notice that the 

EXIT condition implies that the loop is executed at most 1LOG4(B20) times, where 

B20 is the intial value of parameter B2. 

PASCAL 
ENTRY   (N>0)  A  (B2>N)  A P0UER_0F_F0UR(B2)A(B2-B2a); 
EXIT   (3 <; A)  A  (A*A s N)  A  (N <  (A+1)*(A+1)) 

A(COUNTER i IL0G4(B28)); 

BEGIN 
A2  :- 3; 
AB  !=■ 0! 
COUNTER:=8; 
INVARIANT    PGUER_0F_F0UR(B2)A(AB*AB - A2*B2)A(AB^0)A{B2>0) 

A(A2+2*AB+B2>N)A(A2<N) 

A(IL0G4(62)+C0UNTER-IL0G4(820)) 
A(COUNTER S ILOG4(B20)) 

UHILE  1  * B2 DO 
BEGIN 
AB :- AB DIV 2; 
82  :- B2 DIV 4; 

IG - 

■^^*^.^il^*^ ■fc^ti^iteMaiaia »■■ia: ..■■a-.l^iasu^.^ia.-^ .-^^'.^.»^...^.viiriti-^ :....-   .^^^.^^i^^^^*^^ 



iPfliPWiPP!!:»«»»^ mznmr 

T :- A2 + 2*AB + B2; 
COUNTER:-CÜUNTER+1; 
IF T s N THEN 

BEGiN 
A2 :- T; 
AB :- AB + B2 
END 

END; 
A !- AB; 
END. » 

FOR THE HAIN PROGRAM 
THERE ARE 3 VERIFICATION CONDITIONS 

ti  1 
(8<N & 
N<B2 S. 
PÜUER_0F_F0UR(B2)   & 
82=823 

P0UER_0F_F0UR(B2) & 
0*8=8*82 & 
0<8 & 
8<82 & 
N<0+2*0+B2 & 
8<N & 
8<IL0G4(828) & 
IL0G4(B2)+8=IL0G4(B28) & 
(—1-8200 & 
POUER_OF_FOUR(B208) & 
AB8e*AB88=A288*8280 & 
8<A808 & 
8<B288 & 
N<A200+2*AB00+B200 & 
A280<N & 
COUNTER88<ILOG4(B20) & 
ILOG4(8208)+COUNTER00-IL0G4(820) 

-» 

8<AB00 & 
AB08*AB00<N & 
N<(AB00+1)«(AB00+1) & 
COUNTER00<ILOG4(B20))) 

# 2 
(-A2+2*(AB DIV 2)+B2 DIV 4sN & 
-1=B2 & 
P0UER_0F_F0UR{B2)  & 
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AB*AB=A2*B2 & 
0<AB & 
0<B2 & 
N<A2+2*AB+B2 & 
A2<N & 
COUNTER<ILOGA(B20) & 
IL0G4(B2)+C0UNTER-:L0G4(B20) 

"VdUER OF FOUR(82 01V 4) & 
(AB Dlv 2)*(AB DIV 2).A2*(B2 ÜIV 4) & 
0<AB DIV 2 & 
0<B2 OIV 4 & 
N<A2+2*(AB DIV 2)+B2 OIV 4 & 
A2<N & 
COUNTER+1<1LOG4(B20) & 
IL0G4(B2 DIV 4)+COUNTER+l-ILOG4(B20)) 

# 3 
(A2+2*(AB DIV 2)+B2 DIV 4<N & 
4=B2 & 
P0UER_0F_F0UR{B2)  & 
AB*AB=A2*B2 & 
0<AB & 
0<B2 & 
N<A2+2*AB+B2 & 
A2<N & 
C0UNTER<IL0G4(B29) & 
IL0G4(B2)+C0UNTER-IL0G4(820) 

GROWER OF_FOUR(82 DIV 4) S        „„„,,, 
(AB Dlv 2+82 OIV 4)*(AB DIV 2+B2 DIV 4)- 

(A2+2*{A8 DIV 2)+B2 DIV 4)*(B2 DIV 4) & 
0<A.   OIV 2+82 DIV 4 & 

S<A2+2^AB DIV 2)+B2 DIV 4+2#(AB DIV 2+B2 DIV 4J+B2 DIV 4 & 
A2+2*(AB DIV 2)+B2 DIV 4sN & 
COUNTER+1<ILOG4(B20)  & 
IL0G4(82 DIV 4)+CDUNTER+l-lL0G4(820)) 

These verification conditions all simplify to TRUE using the SIMPLIFIER with the 

lemmas (AXIOMS and COALS) in the COALFILE below. The total time for the 

complete verification is 39 CPU seconds. 

The lemmas describe properties of POWER.OF.FOURW, X DIV Y, EVEN(X), and 

lLOC4(X), and are supplied by the vsser. They are written in a form which indicates 

- 18 - 
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how they are to be used by the SIMPL1FIER [Suzuki a]. To read them as logical 

statements simply ignore all occurrences of "®". A lemma of the form "AXIOM A-B" 

means "A-B". "GOAL A SUB B" means "B-A". 

With this advice readers should be able to understand the lemmas (while those 

aquainted with our previous reports will also understand how they are used by the 

S1MPLIFIER in the proofs). Only three of these arithmetical lemmas (those marked 

by a "*") are needed to prove that the program halts within 1LOG4(B20) executions 

of the loop. This reflects the fact that the loop is controlled by a single instruction, 

B2:-B2 DIV 4. So termination is a much simpler problem than correctness of the 

output in this case, and can be checked almost "for free". 

GOALFILE 

* 
* 
* 

AXIOM @P1<9P2 » P1+1<P2; 
GOAL ePl<eP2 SUB (P1<®P3)A(eP3<P2); 
GOAL 8 < «X + ®Y SUB (8 ^ X) A (9 < Y); 
GOAL ®P1<«P2 SUB (P1<®P3)A(@P3-P2); 

AXIOM IFUfJ) THEN aI>9J « I>Ji 

GOAL POUER OF F0UR(®I1 DIV A)SUB P0WER_0F_F0UR(11); 
GOAL 1 < («I DIV 4) SUB P0UER_0F_F0UR(I) A(1<I ); 

AXIOM (®K*@L)DIV öK « L; 
AXIOM IF M+1<K THEN ((@K*@L)+@n )DIV eK « L; 
GOAL e<®Pl DIV eP2 SUB (P2 > 0)A(P1 > 8); 

GOAL EVEN(@Z) SUB (Z*Z=A2*®X)AP0UER_0F_F0UR(X); 
AXIOM IF EVEN(X) THEN (@X DIV 2)*{®X DIV 2) » {X*X)DIV 4; 
AXIOM IF POUER 0F_F0UR(X) THEN ®Y*(®X DIV 4) « {Y*X)DIV 4; 

GOAL (®X DIV @I)={@Y DIV @I) SUB X-Y; 
AXIOM IF EVEN(X) THEN 4*(sX DIV 2) « 2*X! 
AXIOM IF P0UER_0r-_F0UR(I) THEN 4*(al DIV 4) « 

GOAL ®X*aY=aZ»®Y SUB (Y*0):)(X=Z); 

GOAL IL0G4(@X)>8 SUB X>1; 
AXIOM IL0G4(®X DIV 4) « IL0G4(X)-l! 
GOAL lL0G4(®X)a SUB (X>1)AP0UER_0F_F0UR(X) ; 

I; 

- 13 
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The next example shows how the termination of a recursive procedure can be 

proved using a counter and the entry assertion which states a bound on the value of 

the counter. The procedure PGCD computes the greatest common d^isor of M and N 

and returns the values as R. This is stated as the exit assertion. 

PASCAL 

PROCEDURE PGCD(VAR COUNTER.R:INTEGER;H.N:INTEGER); 
ENTRY {n>8)A(N>8)A(C0UNTER<N8)A(C0UNTER+NsN8); 
EXIT R-GCD(n,N)i 
BEGIN 
COUNTER :» C0UNTER+1; 
I :- noom.N)! 
IF 1-8 THEN R :- N ELSE PGCD (COUNTER,R.N,I) 
END; 

Jf* V ^n T^^^ 

FOR pGCD .,.„„,„ 
THERE ARE 2 VERIFICATION CONDITIONS 

ft  1 
(noD{n1N)=0 & 
8<n & 
8<N & 
C0UNTER<N8 & 
C0UNTER+N<N8 

^N-GCD(n.N)) 

# 2 
(-.t1OD{(1tN)-0 & 
g<n & 
8<N & 
C0UNTER<N8 & 
C0UNTER+N<N3 

-» 
8<N & 
8<noD(n,N) & 
C0UNTER+1<N8 & 
C0UNTER+l+n0D(n,N)^N8 & 
(R88=GCD(N,nOD(n,N)) 

R88-GCD(n,N))) 

- 28 
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These verification conditions are simplified to TRUE using the following arithmetic 

lemmas and lemmas describing properties of CCDU^). The computation took 8 CP'J 

seconds. 

GOALFILE 

AXIOM 8 <, nODten.oN)  « TRUE; 
AXIOM M0D(9M,9N)+1  < aN « TRUE; 
AXIOM  IF X-Y*9Q THEN MODlsX.sY)  « 8; 

GOAL «P3 <,  9P1+9P2 SUB (P3SP1)A(8SP2) ; 
AXIOM 9P1<9P2 »  P1+1<P2; 
GOAL 9X <,  9V 3ÜB (K-1-Y)A{X-1SY)| 

GOALFILE 
AXIOM IF Y-M0D(9R,X) THEN GCD(9X.9Y) » GCDCR.X); 
AXIOM IF MOD{X,Y)-0 THEN GCD(9X,9Y) « Y; 
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The last example is the procedure SIFTUP used in the TREESORT3 algorithm. 

The properties that the output array is ordered and the output array is a 

permutation of the input array have been proved for the whole TREESORT3 

algorithm by this verifier [Suzuki 75a]. We verify here that SIFTUP terminates and 

the computation time required is proportional to the logarithm of the size N/10. 

PASCAL 

PROCEDURE SIFTUPde.N: INTEGER); 
ENTRY (K.IL0G2(DIV(N,I9)))A(C0UNTER-3)A(KS8); 

EXIT COUNTERSK+I; 

VAR COPY:REALj J, I,INTEGER!  . 

BEGIN 
I - 18! COPY ♦• nil)! 

18: J - 2 * I; 
ASSERT (COUNTER-IL0G2(DIV(I,I8)))A(COUNTERSK)A 

{K=lL0G2(DIV(N,18)))A{J-2*I)i 
C0UNTER^C0UNTER+1; 
IF J S N THEN 

BEGIN 
IF J < N THEN 

BEGIN 
IF ttU+l]   > Hü]   THEN J ♦■ J+l 
END; 

IF MU]   > COPY THEN 
BEGIN mi]  «- HU];   I  - J;  GO TO 18      END; 

END; 
nil]   - COPY; 

END;.; 

FDR SIFTUP 
THERE ARE 8 VERIFICATION CONDITIONS 

tt  1 
(K=IL0G2(DlV{N,I8)) & 
CDUNTER-8 & 
a<K 

',CDUNTER-IL0G2(DIV(I8,I8)) & 
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COUNTERS & 
K-ILOG2{O1V(N,I0))  & 
2*18-2*18) 

# 2 
(C0PY<ri[j+i] & 
n[j]<n[j+i] & 
J<N & 
J<N & 
COUNTER-11002(017(1,10)) & 
COUNTERS & 
K-IL0G2(0IV(N.I3)) & 
J-2*l 

COUNTER+1-ILOG2(DIV(J+1,I0)) & 
C0UNTER+1<K & 
K=IL0G2(D1V(N.I8)) & 
2*(J+1)-2*(J+1)) 

ti 3 
(CüPY<n[j] & 
-n[j]<ruj+i] & 
J<N & 
J<N & 
C0UNTER-1L0G2(DIV(I,I8)) & 
C0UNTER<K &     . 
K-1LOG2(OIV(N,I0)) & 
J-2*I 

C0UNTER+1=IL0G2(DIV(J,I8)) & 
CÜUNTER+1<K & 
K=ILÜG2(DIV(N,I8)) & 
2*J-2*J) 

# 4 
(C0PY<n[j] & 
-J<N & 
J<N S 
CÜUNTER=ILÜG2(DIV(I,I8)) & 
C0UNTER<K & 
K-1LOG2(O1V(N,I0)) & 
J=2*I 

COUNTER+1-ILOG2(D1V(J,I0)) & 
CÜUNTER+1<K & 
<=ILÜG2(DIV(N,I0)) & 
2*J=2*J) 

ft  5 
(-€0PY<n[J+l] & 
n[j]<n[j+i] & 
J<N & 
J^N & 
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COUNTER-IL0G2(DIV(1,10)1 & 
C0UNTER<K S 
K=IL0G2(DIV{N.I8)) & 
J-2*l 

C0UNTER+1<K+1) 

ft G 
(^C0PY<n[J]   & 
-nu]<ruj+i: & 
J<N & 
J<N & 
COUNTER-ILOG2(DIV{I,I0)) & 
C0UNTER<K & 
K=IL0G2(DIV(N.13)) & 
J=2*I 

COUNTER+UK+l) 

# 7 
(-coPY<n[j] & 
-J<N & 
J<N S 
COUNTER"IL0G2(DIV(I,I8)) & 
COUNTERS & 
K=1LOG2(DIV(N.I0)) & 
J=2*I 

CÜUNTER+1<K+1) 

# 8 
{-J<N & 
COUNTER-ILOG2(DIV(I,I0)) & 
C0UNTER<K & 
K=IL0G2{D1V(N.I8)) & 
J-2*l 

COUNTER+liK+1) 

The time required to verify tnese verification conditions is 24 CPU seconds, using the 

following lemmas. 

GOALFILE 
'AXIOn DIV(«X,«X)  « Is 

GOALFILE 
AXIOM ILOGZd) - 0; 

24 
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AXIOn IL0G2(DIV(2*9A,9B))   « 1L0G2(DIV(A,B))   + 1; 
AXIOM 1L0G2(DIV(2*»A+1,«B))  « IL0G2(DIV(A,B))  + 1; 
GOAL    IL0G2(9X)+1 S IL0G2(9Y)  SU3 2*X S Y; 

In these examples here, and in many others, it turns out that termination (and indeed 

accurate time bounds) are much easier to verify than the intended properties of the 

output. If, as seems frequently to be the case, the halting of the program is 

straightforward (and is not the "real" verification problem) this method of virtual 

programming presents an ^asy and natural way to obtain a quick check of 

termination and a verification of time estimates. 

25 
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